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(Received 13 September 2000 and in revised form 31 January 2001)

This international scientific workshop was organized in Lyon, France, from 10 to
12 May 2000. Its focus was ‘Two-point closures and their applications’, with the
understanding that the analysis and design of such models requires expert knowledge
coming from a wide range of areas in turbulence research, e.g. experiments, numerical
simulations, asymptotic models, etc.

In the global challenge of turbulence modelling, two-point closures prove useful in
many ways. Two-point correlations and spectra are useful measures of the distortion
of the eddy structure of turbulence by stratification, large-scale strains, rotation,
etc. In some cases, e.g. near boundaries, spectra can be drastically changed. In
addition to the accurate characterization of turbulence, the explicit computation of
two-point correlations or spectra shows how the internal dynamics of the various
scales of motion are affected by such distortion, especially the cascade process on
which the production/dissipation relationship depends. Distortion can be the cause
of large departures from isotropic homogeneous turbulence, pulling turbulent flows
far away from the local equilibrium that is often assumed. A rather weak departure
can allow the use of linearized theories such as rapid distortion theory, for the
applicability of which rational bounds may be estimated by comparisons with weakly
nonlinear calculations. A different approach is necessary when dealing with larger
departures, for instance due to growth of instabilities. In that case new physical or
similarity arguments have to be employed to obtain a satisfactory description of the
modification to the cascade process, which can even undergo reversal in the limit
when three-dimensional turbulence becomes two-dimensional. Of course, significant
changes in spectra have direct implications for one-point measures of turbulence –
which can be explicitly derived by integration of two-point correlations – used in most
industrial closure schemes. Such one-point models consequently need to be adapted
when turbulence is strongly affected by distortion.

1. Fundamental aspects and motivation
Two-point statistical closures (the direct interaction approximation, or DIA, the

eddy-damped quasi-normal Markovian, EDQNM, and the test field model, TFM)
were initially developed mainly for the special case of homogeneous, isotropic turbu-
lence during the ground-breaking studies of the 1960s and 1970s (see e.g. Kraichnan
1959, Orszag 1970, Herring & Kraichnan 1971 among many others), but have since
been extended to some anisotropic and even inhomogeneous flows, areas in which work
continues today (see Batchelor 1953, for an introduction to the spectral formalism
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in homogeneous turbulence). Although such models are aimed at strongly nonlinear
turbulence, their mathematical structure is closely related to that of weakly nonlinear
theories (see Cambon & Scott 1999). For example, the theory of weak turbulence
(Benney & Saffman 1966, Zakhrov, L’vov & Falkovich 1992), which has recently been
of considerable interest in the geophysical context, exhibits strong similarities with
two-point closures, even though very few studies illustrating the connections between
the two approaches have appeared to date. Thus, the case of anisotropic, incompress-
ible, homogeneous turbulence subject to different anisotropizing influences, such as
rotation or stratification, and of weakly compressible turbulence, even in the isotropic
case, present challenges which are currently being addressed using both two-point
techniques and asymptotic theories of weak turbulence. It is therefore important to
extend the domain of applicability of two-point closures by incorporating results
from linear theory (i.e. of rapid distortion type, using methods from stability theory)
and weakly nonlinear analyses, results which include at least some aspects of the
real dynamics of the flow. For instance, the response tensor, i.e. the operator which
describes how a spectrum responds to a delta function ‘kick’, is a key concept in
DIA (Kraichnan 1959). In cases of distorted turbulence, a natural first-order approxi-
mation of this operator is constructed from the Green’s function of the full viscous
rapid distortion theory (RDT) problem (in contrast to using merely the viscous part
in the isotropic case). This Green’s function can be incorporated in DIA or EDQNM
theories, improving the modelling of nonlinear transfer terms, as illustrated by Hol-
loway & Hendershot (1977) and Carnevale & Martin (1982) in two-dimensional
turbulence with Rossby waves, and in three-dimensional stratified rotating turbu-
lence (extensively discussed below). Another example is given by Kevlahan & Hunt
(1997), who provided estimates of the limits of applicability of pure linear theory for
turbulence subjected to irrotational strain.

In the case of inhomogeneous turbulence, RDT has provided good predictions for
shear flows, or in the presence of solid boundaries. In that case, a separation of scales
allows local expansions to be carried out, and expresses the action of the walls or
the large scales upon the smaller-scale turbulent motions, which behave according to
classical dynamics. Weak coupling can then be used to express the feedback from the
Reynolds stress tensor to the mean flow in weakly inhomogeneous RDT.

Effective practical implementations of turbulence models have until now been lim-
ited to the one-point approach, which provides model relations between dissipation
rate, kinetic energy and/or individual Reynolds stress components. These models do
not give direct access to length scales, such as the integral length scales in different
directions of space. A rough estimate such as L ∼ k3/2/ε, or even anisotropic esti-
mates based on the full Reynolds stress tensor Rij are questionable in shear flows
(e.g. for characterizing streak-like structures), and in rotating stratified flows (pancake
or columnar structures for instance). In contrast, these quantities are by-products
of spectral models ranging from RDT to nonlinear two-point closures, the results
of which compare well with direct numerical simulations (DNS) and experimental
data. Furthermore, single-point closure predictions of the quantities which are directly
computed (k–ε, k–L, Rij–ε), are also questionable in the presence of a modified energy
cascade with spectral imbalance, even if one restricts attention to the pure homoge-
neous incompressible case. These weaknesses appear no matter how sophisticated the
single-point model considered, for instance in models of the dynamics of Rij when the
‘rapid’ pressure–strain correlation for complex anisotropization processes is compared
with RDT results, or via the ε-equation and ‘slow’ pressure–strain tensor compared
to nonlinear two-point closures.
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Since these quantities are a greatly affected by external distortion (as explained
almost thirty years ago by Launder & Spalding 1972) in cases when spectra change
significantly, one-point methods need to be adapted. By aiming at improving two-point
modelling, one recognizes that, compared to one-point methods, they are intrinsically
more realistic, describing more of the physics of turbulence, such as the continuum
of different scales, and providing a correct treatment of pressure fluctuations (via
the formalism of projection onto solenoidal modes in the incompressible case). The
improvement of two-point models, interesting and useful in its own right, also has
direct consequences for one-point kinematic and dynamical modelling hypotheses.

A further valuable consequence of the fact that two-point techniques can be used
to describe different turbulence scales is that they prove useful in the construction of
subgrid models for large-eddy simulations. But two-point modelling is by no means
limited to this single application, important though it may be. There are also several
practical problems in which two-point spectra are needed, for instance when distortion
of the spectra has strong physical consequences (e.g. for wind loading of structures, as
in the study by Mann 1994) or for diffusion calculations. This last point is illustrated
in the recent development of low-cost kinematic simulations of turbulent velocity
fields with the help of RDT (Nicolleau & Vassilicos 2000).

We should also point out that increasing computational power has recently made
possible comparisons between the models and DNS, as was illustrated during the
workshop in many of the presentations.

A total of thirty participants attended the workshop, held at Lyon from 10 to
12 May 2000, coming from Europe, the United States and Japan. Forty-five minute
communications were given during sessions devoted to various aspects of two-point
turbulence modelling, from fundamental theory to more applied matters. Turbulence
subjected to external stable stratification and/or rotation was given special empha-
sis by many participants, and a significant amount of effort was devoted to the
extension to inhomogeneous flow cases. The close relationship between two-point
statistical models and weak turbulence theories was also discussed at length during
the workshop.

In the following sections, we report on the topics developed by the speakers,
having somewhat arbitrarily organized them into three thematic groups, although the
speakers often aimed their talks at a wider subject area. Section 2 concerns research
primarily devoted to wave-turbulence and two-point closure theories, with models that
utilize a fully anisotropic and/or modal formalism. In § 3, we report on the intensive
efforts put into modelling inhomogeneous flows using two-point quantities. Multiscale
approaches and engineering-related models whose structure derives from two-points
models are described in § 4. The last section discusses some key ideas pertaining to
current advances in two-point models and some future research directions arising
from this workshop.

2. Theories using anisotropic and modal descriptions
G. F. Carnevale [Scripps Institution, UC San Diego]† described how the eddy-

damped quasi-normal Markovian (EDQNM) model can be derived from renormalized
perturbation theory. In this aspect, weak wave or resonant wave interaction transport
equations can be seen as a limiting form of the EDQNM closure. Carnevale also
showed the specific role of quadratic invariants of the system equations, reflecting the

† Speakers at the workshop are cited their affiliation within square brackets.
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Figure 1. Results of Caillol for the energy spectrum of weak internal-wave turbulence: (a) scal-
ings derived from an analytical model; (b) measurements by Bacmeister et al. (1996): horizontal
wavenumber spectra of fluctuations of zonal velocity. The same two slopes are identified: −2 and
−3. (Courtesy P. Caillol and A. Zeitlin.)

conservation properties of the base dynamical equations. For instance, conservation
laws for the energy in resonant interactions bring to the fore three invariants of
the initial systems of equations. One of these invariants appears in the asymptotic
limit of wave turbulence but not in the underlying equations. Its conservation could
suggest simple explanations or scaling laws for an anisotropic cascade process in more
general three-dimensional cases. Potential applications, here restricted to the context
of two-dimensional flows, include flows consisting of Rossby waves or internal gravity
waves (Carnevale & Martin 1982; Carnevale & Frederiksen 1983).

The case of weakly interacting gravity waves was also the topic developed by P.
Caillol [LMD, École Normale Supérieure]. He obtained evolution equations for the
energy spectra, whether or not they include interactions with small mean potential
vorticity (Caillol & Zeitlin 2000). Caillol showed that spectra become anisotropic in
the vertical and horizontal (see figure 1), a feature also observed in computations
of stably stratified turbulence modelled using anisotropic EDQNM (Godeferd &
Cambon 1994). In both works, the slow dynamics of the vortex field is shown to lead
to vertical collapse, i.e. the layering of the flow. Applications of this theory can be
found in comparisons with existing atmospheric measurements, or measured oceanic
gravity wave spectra, which show similar spectral scalings between Caillol’s kinetic
model equations, and atmospheric measurements.

In the different context of MHD, S. Nazarenko [University of Warwick] described
a theory of weak triadic interaction of Alfvén waves. Both quasi-two-dimensional and
isotropic spectrum models were derived, the latter obtained by averaging over the
direction of the external magnetic field (Galtier et al. 2000). Quasi-two-dimensional
states are obtained for weak turbulence subjected to a strong external magnetic field,
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Figure 2. Sub-space, within the entire three-dimensional spectral space, for integration of the
asymptotic model of inertial wave-turbulence by Scott. For each base wavevector k (here at an
angle of 60◦ to the rotation axis), the sub-space is defined as the locus of points M where the triad
of interacting wavevectors k, p and q is resonant. (Note that the surface is drawn in a metallic finish
over a cloudy sky; each component-surface corresponds to a different kind of resonant interaction
with the infinite component (nearly flat) limited by the maximal wavenumber in the numerical
implementation of the model.)

and, from this work, the dynamo effect appears simply as an equipartition of kinetic
and magnetic wave energy.

The presentation by J. F. Scott [LMFA, École Centrale de Lyon] was devoted to
the case of rotating turbulence. The research group in Lyon (see Cambon, Mansour &
Godeferd 1997; Godeferd & Cambon 1994, and references therein) has developed an
anisotropic EDQNM type model that includes the full linear wave solution, and takes
advantage of the corresponding eigenmodes when modelling the nonlinear dynamics.
An asymptotic model is found in the small Rossby number limit of the EDQNM
model (Godeferd, Scott & Cambon 2000). The asymptotic model has the advantage
that it requires triadic integration only on a sub-space of the entire spectral domain
(a rendering of which is presented in figure 2, showing the complex topology of
such surfaces), namely the resonant surfaces for inertial waves, thus greatly reducing
computational costs, while retaining the essential anisotropizing effects of rotation on
turbulence. A model including stratification and rotation is under development.

Regarding the combined effects of rotation and strain, O. Leuchter [ONERA]
reported on a long-term study, which combines experimental (see figure 3), com-
putational and theoretical aspects, including detailed comparisons of anisotropic
EDQNM with DNS data. Emphasis was placed on a mean flow with elliptical
streamlines, created by an original experimental set-up, and on rotating flow entering
an axisymmetric convergent duct (Leuchter, Benoit & Cambon 1992). The two-point
closure was shown to perform well for many rotating strained flows. As mentioned
in § 1, this is due to the exact inclusion of the linear RDT operator, expressing effects
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Figure 3. Experimental set-up of distorting ducts at ONERA, presented by Leuchter.
(a) The axisymmetric contraction, (b) the elliptical streamline flow. (Courtesy O. Leuchter.)

of external distortion, and the corresponding modification of pressure–strain rate
correlations. The latter terms can be extracted easily from the spectral equations, thus
allowing comparison with one-point modelling.

The contribution by F. S. Godeferd [LMFA, École Centrale de Lyon] and C. Staquet
[LEGI, Institut Polytechnique de Grenoble] also concerned the anisotropic EDQNM
model, applied this time to the case of stably stratified turbulence. Comparisons with
DNS allow them to show the validity of the model in predicting the anisotropic
structuring of the flow at all scales, including the dissipative range (Staquet &
Godeferd 1998; Godeferd & Staquet 2000). Good agreement with the model results
lends confidence to the use of the model for much higher Reynolds number predictions
than possible using DNS. Another future direction is the design of a subgrid-scale
model adapted to the case of strongly stratified turbulence, in which the anisotropy
at the level of the cut-off can be quantitatively characterized using EDQNM results.
Considering the fact that the kinetic energy spectrum is shown to be two decades –
a hundred times – larger for vertical wavenumbers than for horizontal ones, it is
important that this anisotropy be reflected in a subgrid-scale model for large-eddy
simulation (LES) of stably stratified turbulence. (Note that the anisotropy in the
horizontal and vertical r.m.s. velocity components is only 50% in a typical case.)

Another model based on a Gaussian approximation, the direct interaction approxi-
mation (DIA), was presented by J. C. Hill [Iowa State University], and applied to
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the transport of active and passive scalars in homogeneous turbulent flows. Hill also
showed comparisons with DNS, and mentioned the extension of the DIA code to
the case of two scalars, e.g. salinity and temperature. The relevance of expansions in
terms of spherical harmonics was extensively discussed for parameterizing detailed
anisotropy in stably-stratified turbulence (Sanderson, Hill & Herring 1986).

One of the main pioneers of two-point models, J. R. Herring [NCAR, University
of Colorado] reviewed the applications of the statistical theory of turbulence, namely
two-point closures, to a variety of problems, among them: models of the far dissipation
range of three-dimensional turbulence; two-dimensional decaying turbulence which
raises the problem of the presence of coherent structures and intermittency; and the
effects of waves, e.g. in stratified flows. In all these examples, recent DNS computations
prove useful for assessing the validity of the model theory.

3. The challenge of inhomogeneous modelling
Even for homogeneous turbulence, going beyond the isotropic case entails a high

computational cost for two-point simulations using classical closures, a cost which is
not insignificant compared with that of direct, pseudo-spectral simulation. Thus, it is
currently unattractive to solve the full set of equations resulting from closures such as
DIA, TFM or EDQNM in the inhomogeneous case without simplifications. In this
context, two types of approach seem particularly promising.

The first type of approach takes inhomogeneity into account via the basis set of
modes used to express the fluctuations, while, as far as possible, maintaining the
structure of equations of the correlation matrix similar to that of the homogeneous
case. The modes which are substituted for Fourier components may, for instance,
be chosen to satisfy the boundary and incompressibility conditions. This approach is
illustrated by the recent work of L. Turner [LANL, Los Alamos], who considered the
problem of channel flow using suitably chosen modes whose amplitude equations are
analogous to those of Fourier modes in the homogeneous case and which are closed
via a random phase approximation (Turner 1999). The normal modes of the linear
problem might well be good candidates in this type of approach.

The second type of approach uses a dual, physical–spectral, representation of the
two-point correlations in which Fourier decomposition with respect to the separation
variable, r = x′ − x, and a position variable such as (x′ + x)/2 are employed. The
remaining necessary assumption is the separation of spectral and physical space
dependences of the correlations, for example by treating the inhomogeneity as weak.
Mathematically tractable techniques include using weighted spectral transforms (the
Gabor transform, as in Nazarenko, Kevlahan & Dubrulle 1999 for rapid distortion
theory), or methods suggested by short-wave linearized stability analysis (Lifschitz
& Hameiri 1991). Outside linear theory, this approach is mainly illustrated by semi-
empirical transport models, discussed below, which treat the dependence with respect
to the position variable by analogy with one-point modelling.

As noted above, the high computational cost of full two-point modelling motivates
attempts to find simplified models which include some of the more realistic physics of
two-point closures, but which are less computationally onerous. Transport models for
the joint physical–spectral space energy spectrum E(k, x) have been developed, which
describe inhomogeneity in a similar way to the diffusive terms in the k–ε model, but
allow a better treatment of dissipation, calculated using a quasi-isotropic spectral
model to describe the energy cascade. Such models lie somewhere between one-point
and full two-point modelling in both cost and realism. Examples include the models
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Figure 4. Application of the SCIT model to the flow over an F2A airfoil. The shading shows
the ratio εf/ε of large-scale energy flux to molecular dissipation, a measure of the lack of spectral
equilibrium. (Courtesy H. Touil & J.-P. Bertoglio.)

of J.-P. Bertoglio and S. Parpais [ECL, Lyon] – the SCIT model, see below –, D. C.
Besnard [CEA, Grenoble] (Besnard et al. 1996), T. Clark and C. Zemach [LANL, Los
Alamos] and T. Burden [KTH, Stockholm].

J.-P. Bertoglio [LMFA, École Centrale de Lyon] presented two models. The first is an
extension of the EDQNM model to account for the presence of weak inhomogeneity
in one direction in an unbounded flow (Laporta & Bertoglio 1994). The model was
shown to provide a good prediction of spatial transport of turbulent kinetic energy.
The other approach, called the SCIT model (Touil, Bertoglio & Parpais 2000), is
capable of treating wall-bounded flows, two-dimensional as of yet. It was used to
compute the wake behind an airfoil (see figure 4) and the flow behind the valve of a
piston engine, as an illustration of the different length scales that are present in such
complex flows. In these applications, spectra are cut off at the larger scales when
approaching the solid boundary, a phenomenon that is studied in detail by Hunt &
Carlotti (2000) (see the following section).

The group at Los Alamos [LANL, Los Alamos] gave four talks devoted to the
spectral modelling of inhomogeneous flows. The object of two of them was an
application of EDQNM modelling ideas to a viscous channel flow bounded by two
parallel free-slip plane walls. L. Turner presented the formalism in a highly compact
form, with the use of a helicity decomposition (Turner 1999). He showed that a
random phase approximation is a necessary hypothesis to confer some universality
on the modelling approach. M. Ulitsky described the testing of a restricted random
phase approximation, and validated it by performing DNS of the Navier–Stokes
equations in the same configuration for fully developed turbulence without mean flow
(Ulitsky, Clark & Turner 1999; Turner & Turner 2000). The statistics were examined
by computing probability density functions (p.d.f.) of the modulus of normalized
spectral covariance.

The other two talks dealt with the local wavenumber model of turbulence, which
describes the evolution of turbulent spectra E(x, k, t) in time, as functions of both the
physical space (x) and the spectral space (k) variables. T. Clark and C. Zemach showed
comparisons of local wavenumber model predictions with results from experiments
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on homogeneous turbulence with irrotational strain and shear (Clark & Zemach
1992; Besnard et al. 1996). After the initial phase of relaxation toward equilibrium,
the model is used to derive and determine the constants of one-point model equations
of k–ε type. The problem of restoring, at least partially, anisotropy reflected as
angular dependence of spectra in k-space, was addressed by Zemach using a special
basis of angular harmonics, whereas Clark presented the application of a numerical
implementation of the local wavenumber model to the case of a free shear layer.

4. Other multiscale approaches
The talk by J. C. R. Hunt [University College, London] concerned the physical

relationships between dynamics of eddy structures and the kinematics of spectra,
especially the characterization of the eddy ‘signature’ rather than its energy or ampli-
tude. As an application of these ideas, P. Carlotti [DAMTP, University of Cambridge]
described how spectra of the different velocity components of a turbulent boundary
layer can be modified by the presence of the wall, with a separation of regions into
the ‘surface layer’ and the ‘eddy surface layer’, abbreviated as ESL (Hunt & Carlotti
2000). Defining the ESL thickness as the region in which a k−1 scaling is found for
the horizontal velocity spectrum, this thickness appears to increase as the Reynolds
number decreases, or when the surface roughness increases. In this zone the structure
of turbulence contains many elongated horizontal eddies.

Two talks were devoted to the properties of small-scale structures. First,
M. Larchevêque [LMM, Université Paris VI] gave a possible explanation of the
k−5/3 inertial range scaling for both incompressible and compressible turbulence,
employing Lundgren’s small-scale vortex in a compressible flow, with the help of
two-dimensional DNS, in which shocklets were identified.

In the incompressible case, Y. Kaneda [Nagoya University] focused on non-
universality of the small-scale statistics of turbulence. He discussed the anomalous
scaling of small-scale anisotropy, presenting DNS at high resolution (10243), and
identifying two classes of candidate flows that may explain the k−3 law of two-
dimensional turbulence: forced turbulence, and another kind with non-trivial scaling
in the enstrophy-cascade-range spectrum that depends on large-scale flow conditions.

Obtaining practical as well as accurate descriptions of complex flows was the guid-
ing theme of two talks. P. Perrier [Cadas (formerly at Dassault Aviation)] stressed that
the SCIT model (Bertoglio’s presentation) was very good as a production/dissipation
two-point model solver for flows with a wide range of scales, but still misses un-
steady singular events, which need further modelling care; using data obtained from
experimental particle image visualization Perrier showed that proper orthogonal de-
composition helps identify such events.

P. Sagaut [ONERA, Paris] presented the concept of LES based on a dynami-
cal multiscale closure for subgrid-scale modelling, an extension of the well-known
dynamical subgrid scale model (Sagaut 1998). This amounts to a generalization of
Germano’s identity between different spectral bands, not necessarily adjacent, and
expressed consistently with a multigrid type numerical scheme. Sagaut then presented
a simulation for the mixing layer showing the validity of the extended model.

Two talks were devoted to the dispersion properties of anisotropic flows. J. C.
Vassilicos [DAMTP, University of Cambridge] presented a Lagrangian model based
on kinematic simulation and RDT that reproduces well the capping effect of stable
stratification on one-particle vertical diffusion, and the two-stage levelling off in
time for two-particle diffusion (Nicolleau & Vassilicos 2000). Y. Kimura [Nagoya
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University] discussed the combined effects of stratification and rotation. He first
showed how the structures in the turbulent field can become either pancake or cigar
shaped, depending on the relative intensity of rotation and stratification (Kimura &
Herring 1996). Kimura then presented preliminary results on single-particle dispersion,
and the influence of stratification and rotation in modifying vertical dispersion.

R. Rubinstein [ICASE, NASA Langley] raised the problem of a unified description
of transition and turbulence. He enumerated different starting points for a statistical
description of the transition process – in terms of boundary layer receptivity, resonant
interaction of Tollmien–Schlichting waves, or parabolized stability equations – each
through evolution equations for the probability density of the mode amplitude.

5. Discussion and future directions
We now discuss the three main themes reported above, starting with the subject

of wave-turbulence and two-point closure theories and models that take advantage
of a fully anisotropic and/or modal description to capture more of the physics of
turbulence.

The vast majority of previous research in these areas has concerned homogeneous
isotropic turbulence. In the case of wave-turbulence, statistical homogeneity is one
consequence of assuming random phases for the wave fields. Wave-turbulence theories
have almost exclusively concentrated on isotropic power-law dispersion relations
σ = |k|α when deriving Kolmogorov spectra, with the further key hypothesis of
constant and isotropic energy flux across different scales associated with wavenumber
|k| (Zakharov et al. 1992). By contrast, in geophysical flows, dispersion laws are
anisotropic, with for instance σ = ±βkx/k2 in the case of Rossby waves, σ = ±2Ωk‖/k
for inertial waves and σ = ±Nk⊥/k for gravity waves (kx, k‖ and k⊥ are respectively
the components of the wavevector in the zonal direction, and the directions parallel
and perpendicular to the rotation/gravity vectors). In the latter two cases, anisotropy
is reflected in the conical ‘St Andrew cross’ shape of isophase surfaces in typical
experiments with a localized point forcing (see e.g. visualizations in Greenspan 1990;
Godeferd & Lollini 1999), and by angular-dependent energy transfers when looking
at nonlinear interactions (as illustrated by Godeferd & Staquet 2000; Godeferd et al.
2000). In the context of homogeneous turbulence subjected to uniform mean-velocity
gradients, RDT solutions also exhibit strong anisotropy. In this case, RDT has the
same analytical basis as an initial-value, linear stability analysis. As stressed during
the workshop, the nonlinear problem of closure is best tackled by decomposing the
background velocity and temperature fields in terms of the normal modes of the
linear problem. Accordingly, nonlinear equations are written for the amplitudes of
such modes or, more precisely, for their statistical correlations. The latter quantities are
constant in the inviscid RDT limit. The correlation matrices are anisotropic, reflecting
the spatial symmetries of the underlying dynamical equations. When divergence-
free velocity fields are considered, the Craya–Herring frame of reference in three-
dimensional Fourier space can be usefully employed (Craya 1958; Herring 1974), or
equivalently a poloidal–toroidal decomposition in physical space, yielding a basis of
solenoidal modes which facilitates the derivation of complete bases of eigenmodes
(Cambon 2001).

Two-point closure and wave-turbulence theory have many common elements. Evol-
ution equations for the mean spectral energy densities of waves are derived in
wave-turbulence and are analogous to the spectral equations of homogeneous two-
point closure. Time evolution is governed by similar energy transfer terms, cubic
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in the wave amplitudes (triads) (Benney & Saffman 1966). In some cases energy
transfer involves fourth-order interactions (quartets) in wave-turbulence when triad
resonances are forbidden by the dispersion law and/or by geometric constraints (e.g.
shallow water waves, plasmas). However, when triple resonances are allowed, for
instance in the cases of rotating, stably stratified and MHD turbulence addressed
during the meeting, the wave-turbulence kinetic equations have the same structure
as the corresponding equations of two-point closure in the limit of small interaction
parameter (e.g. Rossby number, Froude number, magnetic Reynolds number in
MHD) (e.g. Holloway & Hendershot 1977; Godeferd & Cambon 1994; Cambon et
al. 1997). The precise form of the eddy damping parameter, which remains the heuristic
correction to quasi-normal transfer in EDQNM, is unimportant in this limit (J. F.
Scott, private communication). Its only role is to regularize the resonance operators,
which reduce to Dirac delta functions in wave-turbulence. Moreover, provided care
is taken, the ‘Markovianization’ process in EDQNM has similar consequences to
the averaging procedure over the slow time of the wave-turbulence equations. The
two approaches use closure hypotheses, namely Gaussian random phases in wave-
turbulence and quasi-normality under EDQNM. Eddy damping, or more generally the
nonlinear contribution to Kraichnan’s response function, regains some importance for
moderate interaction parameters, allowing extrapolation of wave-turbulence via two-
point closure towards the case of strong interactions (e.g. purely isotropic turbulence
without external or wave effects, for which classic two-point closure models are known
to work satisfactorily). Proposals for renormalizing such generalized eddy damping
were offered by G. Carnevale and R. Rubinstein during informal discussions.

Note that even if strict homogeneity is supposed (assuming it is permitted by
the dynamical equations), the evolution equations resulting from two-point closure
or from wave-turbulence may be complicated and computationally demanding. The
main difficulty lies not in the number of independent spectra or co-spectra (multi-
modal aspect), but in the angular dependence in Fourier space of these quantities. This
dependence can be parameterized using angular harmonics, as shown by Zemach and
Hill, but the number of harmonics needed becomes larger and larger as anisotropy
develops. More generally, efficient numerical procedures have to be developed to
render fully anisotropic two-point closure tractable, even in the homogeneous case.
Interesting studies are in progress, such as the adaptation of pseudo-spectral schemes
or Monte-Carlo techniques (Kaneda 1992). Another approach is to try to derive
asymptotic models (Scott) and scaling laws (Caillol, Nazarenko) analytically, but
simple arguments such as constant isotropic flux are totally inappropriate in this
context. Some theoretical techniques do however exist for evaluating angular energy
fluxes in the context of simplified anisotropic spectra such as E ∼ ka⊥kb‖ for axisym-

metric turbulence, as illustrated by Caillol & Zeitlin (2000) for gravity wave spectra,
following ideas from Zakharov et al. (1992). It is also worth noting that a possible
confusion arises between inhomogeneity and anisotropy, especially when considering
vertically stratified flows. For instance, DNS and RDT results by Galmiche et al.
(2001), which are presented as inhomogeneous, can be reinterpreted in the area of
strictly homogeneous strongly anisotropic turbulence, if ensemble mean fields are
treated as very low-frequency spectral contributions.

As regards two-point closure-based inhomogeneous flows, a variety of approaches
are being developed. On the one hand, inhomogeneity resulting from solid boundaries
may be accounted for in a ‘rational’ way, as illustrated by Turner (two-point closure
for channel flows), and Carlotti (RDT for bounded shear flow). On the other hand,
weak inhomogeneity far from boundaries can be tackled by ray techniques, or WKB
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approaches. It is worthwhile exploring how to perform the extension, to spectral
turbulent transport equations, of asymptotic linear analyses in which disturbances
represented in terms of wavepackets are convected and distorted following mean
flow trajectories (Cambon & Scott 1999, § 5). In the presence of dispersive waves,
it is also possible to advect weakly inhomogeneous turbulence spectra following the
group velocity. Such applications of ray theories to turbulent transport have seen
applications in stably stratified (J. Riley, F. S. Godeferd, private communications) and
rotating (Le Penven, Bertoglio & Shao 1993) weak turbulence. Another example of an
inhomogeneous generalization of EDQNM, incorporating modelling of triple velocity
and pressure–velocity correlations, is the model by Laporta & Bertoglio (1994).

Ultimately, one wishes to derive engineering models using elements from two-point
closure. Unfortunately, a full angular dependence in Fourier space is at present too
complicated to account for in weakly inhomogeneous transport models of the spectral
Reynolds stress tensor components Φij(k, x, t). At most, spherically averaged spectra
are considered, such as the kinetic energy spectrum E(k, x, t). Accordingly, one has to
forget the idea of recovering the asymptotic RDT limit exactly, and needs to model
the ‘rapid’ terms comprising distortion and pressure–strain correlations, modelling
which is unnecessary in the fully anisotropic theory. This closure problem arises from
use of the averaged equations and is treated similarly to single-point closure in both
the local wavenumber approximation (Los Alamos group) and in the SCIT models
(Touil et al. 2000). Alternative, more sophisticated procedures have been proposed by
Cambon, Jeandel & Mathieu (1981), Reynolds & Kassinos (1995) and Cambon &
Scott (1999), but are at present limited to homogeneous turbulence. In the same way,
to date only heuristic corrections have been proposed for treating near-wall effects.
Accordingly, the main advantage compared to classic single-point closure models is
the allowance made for radial energy transfer, reflecting the ‘classic’ cascade, and
resulting in a better prediction of the dissipation rate. For instance, the imbalance
between radial energy flux from the largest scales, εf , and the dissipation rate ε is
allowed for, as illustrated in figure 4.

During the meeting, other multiscale approaches were discussed in the context of
LES (Sagaut), implicitly homogenized computational methods (Perrier), and the use
of simplified eddy structure models (Larchevêque). As stressed by Perrier, proper
orthogonal decomposition (Lumley 1967) modes are good candidates for describing
strongly inhomogeneous flows using two-point stochastic models based on amplitudes
obtained by Galerkin projection of the underlying dynamical equations. Since a
small number of modes is sufficient to represent the energy-containing domain,
low-dimensional dynamical models can be derived. These procedures cannot, of
course, model the dynamically significant smallest scales, which terminate in the
cascade process at the dissipative range. There remains work to do in matching low-
dimensional very-large-scale dynamic models, for instance using proper orthogonal
decomposition modes, with quasi-homogeneous two-point closure and subgrid-scale
models.

Another area of interest is the Lagrangian statistics and dispersion of particles, as
discussed by Vassilicos and Kimura, with important previous work using two-point
closure, such as Lagrangian renormalized approximation, described by Kaneda (1992).
The starting point of kinematic simulation, used by Vassilicos, is similar to that often
used for initializing pseudo-spectral DNS, and the computation of trajectories using
frozen velocity fields yields interesting results for one- and two-particle dispersion.
Linear wave dynamics, as in RDT, can be incorporated very easily in the construction
of the velocity field, including random phases and random orientation of wavevectors,
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and yielding realistic anisotropic dispersion in the presence of stratification, rotation,
and no doubt other organizing effects such as mean shear. Note that RDT cannot
directly be used to provide Lagrangian correlations due to the intrinsic nonlinearity
of the equations of particle motion, even if the velocity field is governed by linear
equations, but it still forms a crucial ingredient of Lagrangian nonlocal models
(see also Kaneda & Ishida 2000), which include much more of the real dynamics
than classic ‘local’ Lagrangian stochastic models. A complete review of multiscale
approaches ought to include shell models, but this topic was not addressed during
the meeting; we hope to incorporate them within the scope of the next workshop.

From the point of view of the scientific community, this workshop has permitted
the identification of an international group of workers (mentioned throughout the
preceding text) currently active in the area of two-point modelling. The meeting is
expected to be the first of a series, with a second one likely to be hosted in the USA
with Dr R. Rubinstein as coordinator. In the European context, a Special Interest
Group (SIG) of ERCOFTAC is being launched, entitled ‘Multipoint turbulence
structure and modelling’.
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